Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin.
نویسندگان
چکیده
PURPOSE To investigate the effect of the lipofuscin component N-retinylidene-N-retinylethanolamine (A2-E) on degradative functions of lysosomes in human retinal pigment epithelial (RPE) cells and to evaluate its mechanism of action. METHODS A2-E was coupled to low-density lipoprotein (LDL). Human RPE cell cultures were loaded with the A2-E/LDL complex, and controls were run with medium containing LDL alone. To determine whether A2-E accumulated in lysosomes, cells were fractionated in a Percoll gradient, and protein degradation was determined by metabolic labeling and measurement of the release of low-molecular-weight radioactivity. Lysosomal degradation was distinguished from nonlysosomal degradation by inclusion of NH4Cl in the medium. The metabolism of sulfated glycosaminoglycans was studied by radiosulfate incorporation in pulse-chase experiments. Intralysosomal pH was determined using a fluorescent lysosomotropic pH indicator. RESULTS A2-E accumulated almost exclusively in the lysosomal compartment. Lysosomal protein degradation was reduced in a dose-dependent fashion in A2-E-treated cells. The selectivity of A2-E on lysosomal function was demonstrated by its lack of effect on degradation of extralysosomal protein. Lysosomal glycosaminoglycan catabolism of RPE cells was also strongly inhibited by A2-E. Lysosomal pH was increased by A2-E. CONCLUSIONS The findings indicate that accumulation of A2-E in RPE cells interferes with lysosomal functions as exemplified by its inhibitory effect on protein and glycosaminoglycan catabolic pathways. The quaternary amine character of the A2-E apparently causes a perturbation of the acidic intralysosomal milieu, resulting in diminished hydrolase action and consequent accumulation of undegraded material. Such mechanism could be operative in retinal diseases associated with excessive lipofuscin accumulation including age-related macular degeneration.
منابع مشابه
Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin.
PURPOSE To determine whether lipofuscin is detrimental to lysosomal and antioxidant function in cultured human retinal pigment epithelial (RPE) cells. METHODS Isolated lipofuscin granules were fed to confluent RPE cultures and the cells maintained in basal medium for 7 days. Parallel cultures were established that did not receive lipofuscin. Cultures were either exposed to visible light (390-...
متن کاملBis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis
Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE i...
متن کاملReduced phagosomal content of the retinal pigment epithelium in response to retinoid deprivation.
Previous investigations have shown that lipofuscin accumulation in the retinal pigment epithelium (RPE) is reduced greatly as a consequence of vitamin A deprivation. The mechanism by which vitamin A regulates RPE lipofuscin deposition remains to be determined. It is possible that retinoids are direct precursors of this substance. Alternatively, vitamin A deficiency may reduce the uptake and pro...
متن کاملImpaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyrid...
متن کاملMultiple A2E treatments lead to melanization of rod outer segment–challenged ARPE-19 cells
PURPOSE Daily phagocytosis of outer segments (OSs) and retinoid recycling by the RPE lead to the accumulation of storage bodies in the RPE containing autofluorescent lipofuscin, which consists of lipids and bisretinoids such as A2E and its oxidation products. Accumulation of A2E and its oxidation products is implicated in the pathogenesis of several retinal degenerative diseases. However, A2E a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 40 3 شماره
صفحات -
تاریخ انتشار 1999